A OXIDAÇÃO E A REDUÇÃO NA BIOCHIMICA

Prof. ANTONIO BARRETO
Catedrático da cadeira de Química
Agrícola da Escola Nacional de
Agronomia

(Resumo da conferência organizada pelo Directorio da Escola Nacional de Agronomia e realizada no dia 20/7/1935 no salão nobre da E. N. A.)

O conhecimento do mecanismo da redução e oxidação nos organismos vivos, é a chave para a elucidação de todos os fenômenos de sínteses biochimicas.

Apesar de se considerar por terra a celebre vis-vitalis da alchimia, no moderno floreccimento da chimica organica, com a descoberta da synthese da urea por Wöhler em 1828, ainda persiste silenciosamente, para muitos autores, o que chamam a força da vida: Die Lebenskraft. De facto, fenômenos ha na biochimica, que não se explicam, e em vão se procura obter com os conhecimentos actuaes da chimica, maiores esclerencimentos.

Em trabalhos que publicamos, ousamos lançar mão dos compostos organometallicos para elucidarmos as diferentes syntheses biochimicas, isto porque, devido, a extraordinaria reactibilidade dos mesmos, torna-se facil e comprehensivel qualquer redução ou oxidação no organismo vivo. Consideramos o facto de não termos até aqui base experimental propriamente para o conhecimento dos fenômenos biochimicos, motivados pelos meios diferentes aos dos organismos vivos, que até hoje ainda empregamos.
Os meios bioquímicos, todos sem excepção, são macromoléculares. As reacções bioquímicas se desenvolvem nesses meios e as directrizes são muito diferentes das que constatamos em laboratório, no geral, procedidas em meio micromolecular.

Da influência que exerce a presença de qualquer impureza nas reacções químicas, é facto observado por qualquer químico, em geral se manifestando nitidamente no rendimento final.

Assim sendo, torna-se lógico, que para o estudo bioquímico das reacções, das sínteses, devemos procurar os mesmos meios coloídaes da química biológica. Acessando-se a estes factos, reacções organometálicas, processadas nesses mesmos meios, poderemos aquilatar com facilidade a multiplicidade das reacções possíveis e não é estranhável que as reacções bioquímicas se apresentem de uma forma tão fantasticamente complexas.

Dos fenômenos bioquímicos, um dos mais estudados, é sem dúvida o da fermentação alcoólica. Em todos esses fenômenos bioquímicos nota-se sempre um encadeamento de reacções, precedendo aos produtos finais, termos instáveis, de grande reactividade. A formação de aldeído acetico, na fermentação alcoólica, foi brilhantemente demonstrada por Neuberg, captando este pela Dimedona ou sulfites.

A formação do álcool, é facilmente compreensível, lançando-se mão da reação de Cannizzaro; mormente admitindo-se a formação de cetoaldeidos:

\[
\begin{align*}
\text{H}_2\text{C}=\text{C}=\text{O} & \quad \text{H}_2\text{C}=\text{C}=\text{H} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

+ \quad \text{H}_2\text{O} + \text{CO}_2

A reacção de Cannizzaro, cada vez mais tem penetrado na explicação de fenômenos biológicos. Esta reacção, porém, de uma aplicação illimitada em todos os fenômenos de oxido-
redução, não tem seu mecanismo sufficientemente esclarecido. Em nossos trabalhos, procuramos esclarecer este mecanismo e, até certo ponto, encontramos apoio na formação intermediária de peroxidos, que se formam, dificilmente captáveis devido a grande instabilidade dos mesmos. De facto, quando aquecemos formiato de calcio, sob determinadas condições, podemos provar a presença de peroxidos, que em meio acido, oxida iodeto de potassio, ou iodeto de cadmio, pondo iodo em liberdade.

Assim sendo, poderia-se dar a formação dos seguintes tautomeros, do formiato de calcio, de zinco ou magnesio.

![Diagrama](image)

Formado o peroxido, facilmente, se transporta o oxigénio de peroxido, ao radical formiato restante, desprendendo-se aldeído formico e restando o carbonato do metal, produtos finais da distillação seca de formiatos.

Com o mesmo aspecto se apresenta a reação de Cannizaro propriamente dita: Aquecendo se aldeído formico ou aldeído benzoico em meio alcalino (NaOH ou KOH) forma-se respectivamente ácido acetico e álcool ou álcool benzoílico e ácido benzoico.

![Diagrama](image)
Acetó o mecanismo da reacção de Cannizzaro sob este ponto de vista, todos os fenômenos de oxido-redução e de oxidação biológica, se tornam de uma clareza meridiana.

Para esclarecer-o, porem ainda mais, poderia ainda acrescentar a seguinte prova experimental:

A reacção de Cannizzaro se processa igualmente a temperatura comum, como por exemplo, submetendo-se a acção de hidróxidos alcalinos terrosos coloidaes e aldeído formico, verifica-se, após algum tempo com as devidas precauções, a formação do formiato, carbonato, alcool metílico etc.

Observamos igualmente que, a reacção de Cannizzaro é extraordinariamente influenciada pela presença ou não de impurezas, sais metalicos etc., provando-se com isto, o motivo dos diferentes fracassos em tais experiencias.

Os formiatos basicos, coloidaes, semelhante a reacção de Cannizzaro, também sofrem uma alteração lenta, activada pela luz, formando-se carbonatos, aldeído formico e seus polímeros a temperatura comum; conseguindo-se observar igualmente a presença de peróxidos.

Ensintimos nesses diferentes peróxidos organometallicos, por que julgamos residir nelles justamente todo e qualquer fenômeno de synthese biológica, tanto os originados da oxido-redução como os de oxidação.

Não estamos isolados sob este ponto de vista, pois, Neuberg, Oppenheimer e até Winterstein (v. pag. 6 do tratado Handbuch der Pflanzenanalyse volume 4) admite a reacção de Cannizzaro na formação de glicocolla e amino alcool, da seguinte forma:

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{N} & \quad \text{C} \quad \text{C} \\
\text{H}_2 & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H}_2 & \quad \text{N} \quad \text{C} \quad \text{C} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

\[
+ \quad \rightarrow \\
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H}_2 & \quad \text{N} \quad \text{C} \quad \text{C} \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H}_2 & \quad \text{N} \quad \text{C} \quad \text{C} \quad \text{OH} \\
\end{align*}
\]

Estendendo-se o phonomeno da oxido-redução de Cannizzaro ao desdobramento de acidos graxos, etc. verificamos.
egualmente uma simplicidade extraordinaria das reacções bio-
chimicas e encontramos facil explicação para o fenomeno da
respiração e da propria função chlorofiliana.

A oxidação dos ácidos graxos, por via biochimica, dá-se
como sabemos, nos carbonos \(B \), ao contrario da oxidação que
obtemos em laboratorio por meio de permanganato etc. e que
da a oxidação no carbono \(A \).

Exceptua-se porém a oxidação por meio de agua oxigen-
ada diluida que em determinadas condições nos dá igualmente
oxidação em \(B \).

Este facto é de enorme importancia para as nossas ob-
servações, pois vem alicerçar a oxido redução biochimica, por
meio da formação de peroxidos intermediarios e que sempre
preconisamos.

A agua oxigenada apresenta a formula tipica do peroxi-
do que formulamos e apresenta a mesma instabilidade dos pe-
roxidos que julgamos caracterizados em innumerases pesquisas
de laboratorio.

Podemos incluir neste capitulo a oxido-redução observada
na synthese do acido formico por meio de acido oxalico e
glicerina:

\[
\begin{align*}
 H & \quad O & \quad O \\
 H-C-O-C-C-OH & \quad H-C-O-C-H \\
 H-C-OH & \quad H-C-OH + CO_2 \\
 H-C-OH & \quad H-C-OH \\
 H & \quad H
\end{align*}
\]

Esta reacção, por nós igualmente estudada, permitiu a
fixação de um peroxido intermediario seguinte:

\[
\begin{align*}
 H & \quad O & \quad O \\
 H-C-O-C-C-OH & \quad H-C-O-C-C-OH \\
 H-C-OH & \quad H-C-O-O \\
 H-C-OH & \quad H-C-OH \\
 H & \quad H
\end{align*}
\]

\(a) \)

\[
\begin{align*}
 H & \quad H & \quad O \\
 H-C-O-C-C-OH & \quad H-C-O-C-C-OH \\
 H-C-OH & \quad H-C-O-H \\
 H-C-OH & \quad H-C-OH \\
 H & \quad H
\end{align*}
\]

\(b) \)
Na síntese do ácido formico, forma-se o éster a que pelo aquecimento nos dá o peróxido b que oxida o próprio radical carboxila do ácido oxalico, formando-se o anidrido carbonico, restando o radical formila, esterificado a glicerina.

Trata-se portanto de uma legítima reação oxido-reductora e perfeitamente de acordo com a própria reação de Cannizzaro.

A única divergência que existe é do agente de formação do peróxido, em vez de termos o radical glicerina que aliás, no caso, apresenta propriedades básicas, caracterizadas na formação do ester.

No fenômeno da respiração, ha como sabemos a absorção de oxigênio molecular, e por força a formação de peróxidos, termo intermediário indispensável e que podemos formular da seguinte forma:

\[
R \quad \text{Fe} \quad \left[O - O - R \right]
\]

Este complexo que corresponde a oxihemoglobina, poderá com facilidade, transmitir oxigênio ativo aos compostos oxidáveis da seguinte forma:

\[
2R - C - O - H + R - \text{Fe} \quad \left[O - O - R \right] \]

\[
2R - C - O - O - R + R - \text{Fe} \quad \left[O - R \right]
\]
A oxidação e a redução na bioquímica

\[2R-C=O + \kern1em \text{H}_2\text{O etc.}\]

ou ainda

\[\begin{align*}
\text{R-Fe} \quad \kern1em \text{O-O-R} \quad + \quad 2\text{R-C} \quad \kern1em \text{O-R} \\
\text{O-O-R} \quad + \quad 2\text{R-C} \quad \kern1em \text{O-O-R} \\
\text{R-Fe} \quad \kern1em \text{O-R} \quad + \quad 2\text{R-C} \quad \kern1em \text{O-O-R}
\end{align*}\]

\[2\text{R-O-R}_{2}\text{CO}_2\] etc.

O fenômeno chlorofílico da redução do gás carbonico é justamente o inverso, podendo, o dioxido de carbono captado pelo complexo chlorofílico (organo-metallico) apresentar a fórmula tautomera de peroxido, que com perda de oxigénio, dá lugar a formação do aldeído formico, activo polimerizando-se em amilo. O facto, de justamente se formar, na função chlorofílica o amilo, vem apoiar a teoria da formação de peroxidos por intermedio de radicaes hydroxillas, no complexo chlorofílico, \(\text{R-MeOH}\) por nós já suficientemente explicantada em revistas técnicas.

Desejamos frisar ainda que todas as reacções de oxido-redução e oxidação na bioquímica carecem de complexos organometallicos, facto constatável em todos fenómenos bioquímicos, pela presença invariável de sais metalicos em maior ou menor escala. Naturalmente, nos seres animaes, pela vida essencialmente oxidante, os depositos minerais, verdadeiras cinzas, se depositam em tal quantidade que constituem finalmente o nosso esqueleto, ao passo que os vegetaes, pela vida reductora e oxido-reductora, acumulam materia organica, a cellulose, constituindo-se deste material a esqueleto, mas sempre existindo, a parte mineral, elemento indispensavel nas syntheses biologicas.

O estudo dessas reacções de oxidacção e oxido reducção para a chimica agricola, tem um valor incalculavel e podemos verificar, que estas se processam mesmo sem a intervenção de microorganismos.
Na exposição à luz de complexos metálicos orgânicos, principalmente os hidroxilados, observamos uma constante oxido-redução e oxidação: Citratos, oxalatos de ferro etc.

Este mesmo fenômeno se observa em solos ferruginosos onde, em virtude da formação dos complexos,

\[
\begin{array}{c}
\text{etc.}
\end{array}
\]

que em presença de O se transforma em

\[
\begin{array}{c}
\text{etc.}
\end{array}
\]

temos uma constante oxidação de tal forma que, dificilmente as terras roxas, apresentam humus em quantidade apreciável, o que já não sucede as terras brancas, pobres em ferro onde mais facilmente, se acumula matéria humosa.

Os complexos ferruginosos da formula \(R-\text{Fe}\) e

\[
\begin{array}{c}
\text{etc. são muito comuns e podem se}
\end{array}
\]

formar mesmo a custa de radicaes carbonilas da seguinte forma:
A oxidação e a redução na bioquímica

\[R-CO \text{O-Me} + \text{HO-Fe-OH} \]

\[\text{OH} \quad \text{O} \quad \text{R} \]

\[\text{R-C-O-Fe} \quad \text{O-Me} \quad \text{OR} \]

Interessante é que estes mesmos complexos formam-se com Aluminio, Bismutho e grande número de outros metaes polivalentes.

O cloro-reto de magnesio, não precipita em hidróxido em uma solução de tartarato de sódio, nem mesmo com adição de hidróxido de sódio.

Em experiências por nós procedidas, verificamos que os complexos de bismutho, em presença de diferentes outros ca- tions, augmenta extraordinariamente a sensibilidade a luz, mor- mente em presença do cation calcio. Da mesma forma comportam-se os complexos ferruginosos.

Este fato é importante para a compreensão dos pheno- menos de oxidação rápida da matéria organica em terras roxas.

Com a acção da luz, decompõem-se os peroxidos que se formam na obscuridade, com uma oxidação da matéria organica. Em consequencia da oxidação ha formação constante de comp- postos carboxilados e hidroxilados e por conseguinte, a reno- vação dos complexos metalicos acima citados.

Cão com as patas sensíveis

Quando o cão aparecer com a parte inferior das patas muito sensíveis, a ponto de deixar sahir sangue em contacto com o solo, trata-se certamente de uma especie de aguamento que consiste na inflamação dos tuberculos plantarios que guarnecem a face inferior dos dedos. Em casos assim, convem dar banhos de formol à 2% aos pés, e em seguida caiar a palma dos mesmos com uma solução de azul de methylene.